Saturday, May 15, 2010

Making Virtual Sense of the Physical World

You'll remember everything. Not just the kind of memory you're used to; you'll remember life in a sense you never thought possible.

Wearable technology is already accessible and available to augment anyone's memory. By recording sensory data we would otherwise forget, digital devices enhance memory somewhat like the neurological condition synesthesia does: automatic, passive gathering of contextual 'sense data' about our everyday life experiences. During recollection, having the extra contextual information stimulates significantly more brain activity, and accordingly yields significant improvements in accuracy.

This week, Britain's BBC2 Eyewitness showed off research by Martin Conway [Leeds University]: MRI brain scan images of patients using Girton Labs Cambridge UK's "SenseCam", a passive accessory that takes pictures when triggered by changes in the environment, capturing momentary memory aids.

The BBC2 Eyewitness TV segment on the SenseCam as a memory aid:

The scientists' interpretation of the brain imaging studies seems to indicate that vividness and clarity of recollection is significantly enhanced for device users, even with only the fragmentary visual snapshots from the SenseCam. One can easily imagine how a device that can also record smells, sounds, humidity, temperature, bio-statistics, and so on could drastically alter the way we remember everyday life!

Given this seemingly inevitable technological destiny, we may feel the
limits of human memory changing dramatically in the near future. Data scientists are uniquely positioned to see this coming; a recent book by former Microsoft researchers Gordon Bell and Jim Gemmell, Total Recall: How the E-Memory Revolution Will Change Everything, begins its hook with "What if you could remember everything? Soon, if you choose, you will be able to conveniently and affordably record your whole life in minute detail."

When improvements in digital interfacing allow us to use the feedback from our data-collecting devices effortlessly and in real-time, we might even develop new senses.



A hypothetical example: my SkipSenser device can passively detect infrared radiation from my environment and relay this information, immediately and unobtrusively, to my brain (perhaps first imagine a visual gauge in a retinal display). By simply going through my day to day life and experiencing the fluctuations in the infrared radiation of my familiar environments, I will naturally begin to develop a sense for the infrared radiation being picked up by the device. In this hypothetical I might develop over time an acute sense of "heat awareness", fostered by the unceasing and incredibly precise measurements of the SkipSenser.

Of course I'm not limited to infrared radiation for my SkipSenser; hypothetically anything detectable can stimulate a new sense. The digital device acts as an aid or a proxy for the body's limited analog sense detectors (eyes, ears, skin, i.e. our evolutionary legacy hardware) and also adds new sense detectors, allowing the plastic brain to adapt itself to new sensory input. I could specialize my auditory cortex, subtly sensing the characteristics of sound waves as they pass through the air, discovering patterns and insights previously thought too complex for normal human awareness. I could even allow all of my human senses to slowly atrophy in favor of fomenting a set of entirely unfamiliar senses, literally changing my perception to fit some future paradigm.


NASA Interferometer Images

Augmenting our sensory systems isn't new, it's what humans are naturally selected for. Generally speaking, 'tool' or 'technology' implies augmentation. If you drive a car, your brain has to adapt to the feel of the steering wheel, the pressure needed to push the pedals, the spatial dimensions of the vehicle, the gauges in the dashboard. While you learned how to drive a car (or ride a bike), your brain was building a neural network by associatively structuring neurons, working hard to find a system good enough to both A) accurately handle these new arbitrary input parameters and B) process the information at a rate that allows you to respond in a timely fashion (i.e. drive without crashing). That ability to restructure based on sensory feedback is the essence of neuroplasticity; it's how humans specialize, how humanity shows such diverse talent as a species.


That diversity of talent seems set to explode because here's what is new: digital sensors that are easy to use, increasingly accessible, and surpassing human faculty. Integrated devices like the SenseCam continue to add functionality and shrink in size and effort required, now encompassing a sensory cost-benefit solution that appeals not only to the disabled, but to the everyman.

There may be no limits to the range of possible perception. Depending on your metaphysical standpoint, this might also mean there may be no limits to the range of possible realities.

blog comments powered by Disqus

Think about...

Random Thoughts

Where Thinkers Come From
 
Real Time Web Analytics